

RESEARCH SEMINAR

Presentation

Name: Akash Arya Roll. No. : 22M1851 Instructor: **Prof Shobha Shukla** Mentor: **T. Archana**

CHIRAL METAMATERIALS

"Exploring the Unique Properties of Non-Symmetrical Structures for Advanced Materials"

22m1851@iitb.ac.in

MEMS Department

LIST OF CONTENTS

U1 INTRODUCTION

Page 03 of 15

FUTURE ADVANCEMENTS

05

FABRICATION

INTRODUCTION

"META" = BEYOND

- Artificially structured materials
- Properties not seen in natural materials.
- Negative refractive index :

Veselgo: Propose the concept of Left Hand Material Pendry et al. realized manmade electric plasma utilizing wire medium of -ve permittivity. Smith et al. Made 1st manmade LHM by utilizing SRRS and wires.

Leonhardt: The optical transformation was proposed to ontrol the propagation of wave using metamaterial

H

2006

Prof. John Pendry

Page 04 of 15

CHIRALITY?

- Lord Kelvin first used word "Chirality" to describe handedness in 1873.
- So chiral medium is composed of particles that can not be superimpose on their mirror image.
- In 1910, Lindeman introduced the "Optical Activity" phenomenon with collection of helical coils as artificial chiral molecules.

- Tretyakov et al realised the possibility of negative refraction by chiral nihility in 2003.
- The idea of chiral nihility is that when μ and ϵ of a chiral medium are small and very close to zero.
- In 2004, Pendry discussed possibility to achieve negative refraction.

Image ref., Wu et al. (2019). Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 107950.

Page 05 of 15

WHAT MATERIALS ARE USED?

It can be made from a wide range of materials, including metals, plastics, ceramics, and semiconductors.

- Gold
- Silicon
- Polymers
- Graphene
- Magnesium oxide
- Carbon nanotubes

The specific material used depends on the desired properties and the manufacturing process.

Anti-tetrachiral

Chiral-antichiralantichiral

Chiral-antichiralantichiral

Image ref., Wu et al. (2019). Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 107950.

Chiral metastructures

Anti-tetrachiral lattices

Cellular with planar antitetrachiral topology

auxetic lattice with anti-tetrachiral

chiral lattice with negative Poisson ratio

Compression-twist chiral

Page 06 of 15

FABRICATION PROCESS

Electron Beam Lithography

Nanoimprint Lithography

Image ref. : sisan et al. (2019). Metamaterials in the World of Materionics Overview of Fabrication Processes.

Page 07 of 15

FABRICATION PROCESS

Image ref. : sisan et al. (2019). Metamaterials in the World of Materionics Overview of Fabrication Processes.

Page 08 of 15

METHODS WITH SEM IMAGES

Comparison of fabrication processes with gold

Image adapted from Xiong et al., (2022). Microscopies Enabled by Photonic Metamaterials. Sensors. 22. 1086. 10.3390/s22031086.

Page 09 of 15

Wide Range of Applications

Medical Sector	Automotive	Aerospace	Sensors
Antennas/Sensors	Motor Magnetic Materials	Communication System	Materials Identification
Medical Imaging	Night Vision System	Llghtweight Aircraft	Parameter Sensing
Strain Sensing	LED Headlight	Invisibility cloaks	Tunable sensors
Cancer Detection	Laser Radar	Superlenses	Biosensing

Several other applications invisible slab, light & sound filtering, Spectroscopy, metamaterial absorber, MEMS, Remote sensing, smart material application, Spectroscopy etc.

Page 10 of 15

HISTORICAL DEVELOPMENT

Yearwise publications

Data ref., Cen et al., (2022). Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination (Adv. Mater. 37/2022). Advanced Materials. 34. 2270263.

2018 - 2019 Optical Metasurfaces

Publication was reduced afterwards increased.

2022 - 2030 Chiral Metasurfaces

Percentage of articles will increase more.

Page 11 of 15

GLOBAL MARKET = = =

It is estimated that the worldwide metamaterial market size was USD 316 million.

The medium market metamaterial size according to report study it estimate to reach **<u>\$10.7 billion</u>**.

Page 12 of 15

FUTURE ADVANCEMENTS

In the future, there are several potential advancements that could further enhance the capabilities of chiral metamaterials. These include:

New fabrication techniques

new fabrication techniques may be developed that make it easier and more cost-effective to produce chiral metamaterials.

Multifunctional chiral metamaterials

It may be possible to engineer chiral metamaterials that exhibit multiple optical properties simultaneously.

Integration with other technologies

It can be integrated with other technologies, such as microfluidics, to create new types of sensors and devices.

Enhanced tunability

Developing chiral metamaterials that are more tunable, allowing their optical properties to be adjusted in realtime in response to changing conditions.

Page 13 of 15

KEY SEMINAR LEARNING

Historical Development

1

5

2 Concept and theory analysis

3 Fabrication methods

4 Worldwide market analysis

Future advancements and technology

Page 14 of 15

IIT Bombay

MEMS Department

www.akasharya.in