Microfluidic Cell Counter

Akash Arya (Roll No-16510006) akash.arya@iitgn.ac.in

10th Jan 2018

Outline

- Microfluidics
- Physics of microfluidic flow
- Reynolds number
- Fabrication technique
- Paper based microchannel
- Cell counting principle
- Future plans
- References

Microfluidics

- Microfluidics deals with the behaviour, precise control and manipulation of fluids within sub-millimeter scale region.
- It involves laminar flow of liquid.
- Useful platform for fabricating low cost sensing and detecting device.

Why microfluidics?

- (1) Cost efficient
- (2) Faster diagnosis
- (3) Low sample volume

Figure 1: Lab on a Chip for stem cell studies J. R. Soc. of Chem.,Lab on Chip,vol: 13,3789–3802(2013)

Physics of microfluidic flow

Navier-Stokes Equation

• Conservation of momentum or force equation

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla \mathbf{p} + \frac{\mu}{\rho} (\nabla^2) \mathbf{v}$$

• Non-linear PDE's, difficult to solve.

Writing NS equation in terms of the dimensionless variables

$$t^* = ft, \vec{x}^* = rac{\vec{x}}{L}, \vec{v}^* = rac{\vec{v}}{v}, \vec{\nabla} = rac{
abla^*}{L}$$
 and $p^* = rac{LP}{v\mu}$

$$\underbrace{\left(\frac{fL}{\nu}\right)\frac{\partial\nu^{*}}{\partial t^{*}} + \vec{v}^{*}(\vec{\nabla}^{*}.\vec{v}^{*}) = -\left(\frac{\mu}{\rho\nu L}\right)\vec{\nabla}^{*}\rho^{*} + \left(\frac{\mu}{\rho\nu L}\right)\nabla^{*2}\nu^{*}}_{\text{where }\frac{\mu}{\rho\nu L} \to \text{Inverse of Reynolds number(Re)}}$$
(2)

(1)

Reynolds Number

Ratio of inertial to viscous forces

٩

$$Re = \frac{F_i}{F_v} = \frac{\rho v L}{\mu} = \frac{v \times L}{\nu}$$

Where $\nu(=\frac{\mu}{\rho})$ is kinematic viscosity

- Laminar flow-dominated by viscous forces
- Turbulant flow-dominated by inertial forces

If Re is small, Laminar

If Re is large, Turbulent

Fabrication technique of microfluidic devices

Photolithography

• Process that transfers the shapes from template onto a surface using light.

Figure 3, M. Born, E. Wolf, Principles of Optics 6th Edi. , New York(1980)

Paper based microfluidic devices

Advantages

- Easily available material
- Low cost and light weight
- Quicker fabrication

Figure 4, Microchannel designs and Laboratory prepared channel

Paper based fabrication techniques

Methods

- Wax Printing
- Photolithography

Cell Counting Principle

Measure cells size and transit time by coulter counter

• Cells are less conductive when passes through electrodes resistance increases.

Figure 5, M. D. Graham, J. Labo. Auto., 8(6): 72-81(2003)

- Resistive pulses are generated for each cell.
- Each cell's size is measured as pulse amplitude.
- Transit time is measured as pulse width.

Fabrication of paper based microfluidic devices for accurate cell counting

PDMS based coulter counter

Figure 6, F. Liu, K.C. Pawan.et. al, J. Anal. Chem., vol. 88 (1), 711-717, 2016

- Can we fabricate a paper based microfluidic cell counter?
- Experiments plans
 - Conductive paper electrode
 - Integrate with microfluidic channel
 - Detect transit time of cells or smaller particles

References

References

- Wu and Gu, J. Bio. Opt., vol:16(8),080901,2011
- T.M. Squires, S.R. Quake, Rev. Mod. Phys. vol:77,977,2005
- D. Erickson, D.Q. Li, Anal. Chim. Ac.,vol:507,11-26,2004.
- I. Giouroudi, F. Keplinger, Int. J. Mol. Sci., vol:14, 18535-18556, 2013.
- E. Chatterjee, T. Marr, P. Dhagat ,V.T.Remcho, B.chem., vol:156,651(6),2011
- R. Antony, M.S.G. Nandagopal, NSN Selvaraju, J. M.Syst. Tech., Vol:20, 1051-1061,2014
- F. Liu, K.C. Pawan,G.Zhang,Z. Jiang,J.Anal.Chem.,vol:88 (1), 711–717,2016
- http://www.elveflow.com/microfluidic-tutorials/

Thanking you

Thanks for your attention!